
An Introduction to Display Editing with Vi

William Joy

Mark Horton

Computer Science Division

Department of Electrical Engineering and Computer Science

University of California, Berkeley

Berkeley, Ca. 94720

ABSTRACT

Vi (visual) is a display oriented interactive text editor. When using vi the screen of your

terminal acts as a window into the file which you are editing. Changes which you make to the

file are reflected in what you see.

Using vi you can insert new text any place in the file quite easily. Most of the commands

to vi move the cursor around in the file. There are commands to move the cursor forward and

backward in units of characters, words, sentences and paragraphs. A small set of operators, like

d for delete and c for change, are combined with the motion commands to form operations such

as delete word or change paragraph, in a simple and natural way. This regularity and the

mnemonic assignment of commands to keys makes the editor command set easy to remember

and to use.

Vi will work on a large number of display terminals, and new terminals are easily driven

after editing a terminal description file. While it is advantageous to have an intelligent terminal

which can locally insert and delete lines and characters from the display, the editor will function

quite well on dumb terminals over slow phone lines. The editor makes allowance for the low

bandwidth in these situations and uses smaller window sizes and different display updating algo-

rithms to make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals, storage tubes and

‘‘glass tty’s’’ using a one line editing window; thus vi’s command set is available on all termi-

nals. The full command set of the more traditional, line oriented editor ex is available within vi;

it is quite simple to switch between the two modes of editing.

1. Getting started

This document provides a quick introduction to vi. (Pronounced vee-eye.) You should be running vi on a file

you are familiar with while you are reading this. The first part of this document (sections 1 through 5) describes the

basics of using vi. Some topics of special interest are presented in section 6, and some nitty-gritty details of how the

editor functions are saved for section 7 to avoid cluttering the presentation here.

There is also a short appendix here, which gives for each character the special meanings which this character

has in vi. Attached to this document should be a quick reference card. This card summarizes the commands of vi in

a very compact format. You should have the card handy while you are learning vi.

The financial support of an IBM Graduate Fellowship and the National Science Foundation under grants MCS74-07644-A03 and MCS78-07291 is

gratefully acknowledged.

USD:11-2 An Introduction to Display Editing with Vi

1.1. Specifying terminal type

Before you can start vi you must tell the system what kind of terminal you are using. Here is a (necessarily

incomplete) list of terminal type codes. If your terminal does not appear here, you should consult with one of the

staff members on your system to find out the code for your terminal. If your terminal does not have a code, one can

be assigned and a description for the terminal can be created.

Code Full name Type

2621 Hewlett-Packard 2621A/P Intelligent

2645 Hewlett-Packard 264x Intelligent

act4 Microterm ACT-IV Dumb

act5 Microterm ACT-V Dumb

adm3a Lear Siegler ADM-3a Dumb

adm31 Lear Siegler ADM-31 Intelligent

c100 Human Design Concept 100 Intelligent

dm1520 Datamedia 1520 Dumb

dm2500 Datamedia 2500 Intelligent

dm3025 Datamedia 3025 Intelligent

fox Perkin-Elmer Fox Dumb

h1500 Hazeltine 1500 Intelligent

h19 Heathkit h19 Intelligent

i100 Infoton 100 Intelligent

mime Imitating a smart act4 Intelligent

t1061 Teleray 1061 Intelligent

vt52 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used by the system for

this terminal is ‘2621’. In this case you can use one of the following commands to tell the system the type of your

terminal:

% setenv TERM 2621

This command works with the csh shell. If you are using the standard Bourne shell sh then you should give the

commands

$ TERM=2621

$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in, you can use the tset

program. If you dial in on a mime, but often use hardwired ports, a typical line for your .login file (if you use csh)

would be

setenv TERM `tset − −d mime`

or for your .profile file (if you use sh)

TERM=`tset − −d mime`

Tset knows which terminals are hardwired to each port and needs only to be told that when you dial in you are prob-

ably on a mime. Tset is usually used to change the erase and kill characters, too.

1.2. Editing a file

After telling the system which kind of terminal you have, you should make a copy of a file you are familiar

with, and run vi on this file, giving the command

% vi name

replacing name with the name of the copy file you just created. The screen should clear and the text of your file

An Introduction to Display Editing with Vi USD:11-3

should appear on the screen. If something else happens refer to the footnote.‡

1.3. The editor’s copy: the buffer

The editor does not directly modify the file which you are editing. Rather, the editor makes a copy of this file,

in a place called the buffer, and remembers the file’s name. You do not affect the contents of the file unless and until

you write the changes you make back into the original file.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text which should be

replaced with appropriate input will be given in italics. We will represent special characters in SMALL CAPITALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals with cursor position-

ing keys, these keys will also work within the editor. If you don’t hav e cursor positioning keys, or even if you do,

you can use the h j k and l keys as cursor positioning keys (these are labelled with arrows on an adm3a).*

(Particular note for the HP2621: on this terminal the function keys must be shifted (ick) to send to the

machine, otherwise they only act locally. Unshifted use will leave the cursor positioned incorrectly.)

1.6. Special characters: ESC, CR and DEL

Several of these special characters are very important, so be sure to find them right now. Look on your key-

board for a key labelled ESC or ALT. It should be near the upper left corner of your terminal. Try hitting this key a

few times. The editor will ring the bell to indicate that it is in a quiescent state.‡ Partially formed commands are

cancelled by ESC, and when you insert text in the file you end the text insertion with ESC. This key is a fairly harm-

less one to hit, so you can just hit it if you don’t know what is going on until the editor rings the bell.

The CR or RETURN key is important because it is used to terminate certain commands. It is usually at the right

side of the keyboard, and is the same command used at the end of each shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the editor to stop what it is

doing. It is a forceful way of making the editor listen to you, or to return it to the quiescent state if you don’t know

or don’t like what is going on. Try hitting the ‘/’ key on your terminal. This key is used when you want to specify a

string to be searched for. The cursor should now be positioned at the bottom line of the terminal after a ‘/’ printed as

a prompt. You can get the cursor back to the current position by hitting the DEL or RUB key; try this now.* From

now on we will simply refer to hitting the DEL or RUB key as ‘‘sending an interrupt.’’**

The editor often echoes your commands on the last line of the terminal. If the cursor is on the first position of

this last line, then the editor is performing a computation, such as computing a new position in the file after a search

or running a command to reformat part of the buffer. When this is happening you can stop the editor by sending an

interrupt.

‡ If you gav e the system an incorrect terminal type code then the editor may have just made a mess out of your screen. This happens when it

sends control codes for one kind of terminal to some other kind of terminal. In this case hit the keys :q (colon and the q key) and then hit the

RETURN key. This should get you back to the command level interpreter. Figure out what you did wrong (ask someone else if necessary) and try

again.

Another thing which can go wrong is that you typed the wrong file name and the editor just printed an error diagnostic. In this case you

should follow the above procedure for getting out of the editor, and try again this time spelling the file name correctly.

If the editor doesn’t seem to respond to the commands which you type here, try sending an interrupt to it by hitting the DEL or RUB key on your

terminal, and then hitting the :q command again followed by a carriage return.

* As we will see later, h moves back to the left (like control-h which is a backspace), j moves down (in the same column), k moves up (in the

same column), and l moves to the right.

‡ On smart terminals where it is possible, the editor will quietly flash the screen rather than ringing the bell.

* Backspacing over the ‘/’ will also cancel the search.

** On some systems, this interruptibility comes at a price: you cannot type ahead when the editor is computing with the cursor on the bottom line.

USD:11-4 An Introduction to Display Editing with Vi

1.7. Getting out of the editor

After you have worked with this introduction for a while, and you wish to do something else, you can give the

command ZZ to the editor. This will write the contents of the editor’s buffer back into the file you are editing, if you

made any changes, and then quit from the editor. You can also end an editor session by giving the command :q!CR;†

this is a dangerous but occasionally essential command which ends the editor session and discards all your changes.

You need to know about this command in case you change the editor’s copy of a file you wish only to look at. Be

very careful not to give this command when you really want to save the changes you have made.

2. Moving around in the file

2.1. Scrolling and paging

The editor has a number of commands for moving around in the file. The most useful of these is generated by

hitting the control and D keys at the same time, a control-D or ‘ˆD’. We will use this two character notation for

referring to these control keys from now on. You may have a key labelled ‘ˆ’ on your terminal. This key will be

represented as ‘↑’ in this document; ‘ˆ’ is exclusively used as part of the ‘ˆx’ notation for control characters.‡

As you know now if you tried hitting ˆD, this command scrolls down in the file. The D thus stands for down.

Many editor commands are mnemonic and this makes them much easier to remember. For instance the command to

scroll up is ˆU. Many dumb terminals can’t scroll up at all, in which case hitting ˆU clears the screen and refreshes it

with a line which is farther back in the file at the top.

If you want to see more of the file below where you are, you can hit ˆE to expose one more line at the bottom

of the screen, leaving the cursor where it is. The command ˆY (which is hopelessly non-mnemonic, but next to ˆU

on the keyboard) exposes one more line at the top of the screen.

There are other ways to move around in the file; the keys ˆF and ˆB move forward and backward a page, keep-

ing a couple of lines of continuity between screens so that it is possible to read through a file using these rather than

ˆD and ˆU if you wish.

Notice the difference between scrolling and paging. If you are trying to read the text in a file, hitting ˆF to

move forward a page will leave you only a little context to look back at. Scrolling on the other hand leaves more

context, and happens more smoothly. You can continue to read the text as scrolling is taking place.

2.2. Searching, goto, and previous context

Another way to position yourself in the file is by giving the editor a string to search for. Type the character /

followed by a string of characters terminated by CR. The editor will position the cursor at the next occurrence of this

string. Try hitting n to then go to the next occurrence of this string. The character ? will search backwards from

where you are, and is otherwise like /.†

If the search string you give the editor is not present in the file the editor will print a diagnostic on the last line

of the screen, and the cursor will be returned to its initial position.

If you wish the search to match only at the beginning of a line, begin the search string with an ↑. To match

only at the end of a line, end the search string with a $. Thus /↑searchCR will search for the word ‘search’ at the

beginning of a line, and /last$CR searches for the word ‘last’ at the end of a line.*

The command G, when preceded by a number will position the cursor at that line in the file. Thus 1G will

move the cursor to the first line of the file. If you give G no count, then it moves to the end of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, the editor will place only

the character ‘˜’ on each remaining line. This indicates that the last line in the file is on the screen; that is, the ‘˜’

† All commands which read from the last display line can also be terminated with a ESC as well as an CR.

‡ If you don’t hav e a ‘ˆ’ key on your terminal then there is probably a key labelled ‘↑’; in any case these characters are one and the same.

† These searches will normally wrap around the end of the file, and thus find the string even if it is not on a line in the direction you search pro-

vided it is anywhere else in the file. You can disable this wraparound in scans by giving the command :se nowrapscanCR, or more briefly :se

nowsCR.

*Actually, the string you give to search for here can be a regular expression in the sense of the editors ex(1) and ed(1). If you don’t wish to learn

about this yet, you can disable this more general facility by doing :se nomagicCR; by putting this command in EXINIT in your environment, you

can have this always be in effect (more about EXINIT later.)

An Introduction to Display Editing with Vi USD:11-5

lines are past the end of the file.

You can find out the state of the file you are editing by typing a ˆG. The editor will show you the name of the

file you are editing, the number of the current line, the number of lines in the buffer, and the percentage of the way

through the buffer which you are. Try doing this now, and remember the number of the line you are on. Give a G

command to get to the end and then another G command to get back where you were.

You can also get back to a previous position by using the command `` (two back quotes). This is often more

convenient than G because it requires no advance preparation. Try giving a G or a search with / or ? and then a `` to

get back to where you were. If you accidentally hit n or any command which moves you far away from a context of

interest, you can quickly get back by hitting ``.

2.3. Moving around on the screen

Now try just moving the cursor around on the screen. If your terminal has arrow keys (4 or 5 keys with arrows

going in each direction) try them and convince yourself that they work. If you don’t hav e working arrow keys, you

can always use h, j, k, and l. Experienced users of vi prefer these keys to arrow keys, because they are usually right

underneath their fingers.

Hit the + key. Each time you do, notice that the cursor advances to the next line in the file, at the first non-

white position on the line. The − key is like + but goes the other way.

These are very common keys for moving up and down lines in the file. Notice that if you go off the bottom or

top with these keys then the screen will scroll down (and up if possible) to bring a line at a time into view. The

RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H will take you to the top

(home) line on the screen. Try preceding it with a number as in 3H. This will take you to the third line on the

screen. Many vi commands take preceding numbers and do interesting things with them. Try M, which takes you to

the middle line on the screen, and L, which takes you to the last line on the screen. L also takes counts, thus 5L will

take you to the fifth line from the bottom.

2.4. Moving within a line

Now try picking a word on some line on the screen, not the first word on the line. move the cursor using

RETURN and − to be on the line where the word is. Try hitting the w key. This will advance the cursor to the next

word on the line. Try hitting the b key to back up words in the line. Also try the e key which advances you to the

end of the current word rather than to the beginning of the next word. Also try SPACE (the space bar) which moves

right one character and the BS (backspace or ˆH) key which moves left one character. The key h works as ˆH does

and is useful if you don’t hav e a BS key. (Also, as noted just above, l will move to the right.)

If the line had punctuation in it you may have noticed that that the w and b keys stopped at each group of

punctuation. You can also go back and forwards words without stopping at punctuation by using W and B rather

than the lower case equivalents. Think of these as bigger words. Try these on a few lines with punctuation to see

how they differ from the lower case w and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving to a word on a line

below where you are by repeatedly hitting w.

2.5. Summary

SPACE advance the cursor one position

ˆB backwards to previous page

ˆD scrolls down in the file

ˆE exposes another line at the bottom

ˆF forward to next page

ˆG tell what is going on

ˆH backspace the cursor

ˆN next line, same column

ˆP previous line, same column

USD:11-6 An Introduction to Display Editing with Vi

ˆU scrolls up in the file

ˆY exposes another line at the top

+ next line, at the beginning

− previous line, at the beginning

/ scan for a following string forwards

? scan backwards

B back a word, ignoring punctuation

G go to specified line, last default

H home screen line

M middle screen line

L last screen line

W forward a word, ignoring punctuation

b back a word

e end of current word

n scan for next instance of / or ? pattern

w word after this word

2.6. View

If you want to use the editor to look at a file, rather than to make changes, invoke it as view instead of vi. This

will set the readonly option which will prevent you from accidently overwriting the file.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the i (insert) command. After you type i, everything you type until you

hit ESC is inserted into the file. Try this now; position yourself to some word in the file and try inserting text before

this word. If you are on an dumb terminal it will seem, for a minute, that some of the characters in your line have

been overwritten, but they will reappear when you hit ESC.

Now try finding a word which can, but does not, end in an ‘s’. Position yourself at this word and type e (move

to end of word), then a for append and then ‘sESC’ to terminate the textual insert. This sequence of commands can

be used to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works; i placing text to the left

of the cursor, a to the right.

It is often the case that you want to add new lines to the file you are editing, before or after some specific line

in the file. Find a line where this makes sense and then give the command o to create a new line after the line you

are on, or the command O to create a new line before the line you are on. After you create a new line in this way,

text you type up to an ESC is inserted on the new line.

Many related editor commands are invoked by the same letter key and differ only in that one is given by a

lower case key and the other is given by an upper case key. In these cases, the upper case key often differs from the

lower case key in its sense of direction, with the upper case key working backward and/or up, while the lower case

key moves forward and/or down.

Whenever you are typing in text, you can give many lines of input or just a few characters. To type in more

than one line of text, hit a RETURN at the middle of your input. A new line will be created for text, and you can con-

tinue to type. If you are on a slow and dumb terminal the editor may choose to wait to redraw the tail of the screen,

and will let you type over the existing screen lines. This avoids the lengthy delay which would occur if the editor

attempted to keep the tail of the screen always up to date. The tail of the screen will be fixed up, and the missing

lines will reappear, when you hit ESC.

While you are inserting new text, you can use the characters you normally use at the system command level

(usually ˆH or #) to backspace over the last character which you typed, and the character which you use to kill input

An Introduction to Display Editing with Vi USD:11-7

lines (usually @, ˆX, or ˆU) to erase the input you have typed on the current line.† The character ˆW will erase a

whole word and leave you after the space after the previous word; it is useful for quickly backing up in an insert.

Notice that when you backspace during an insertion the characters you backspace over are not erased; the cur-

sor moves backwards, and the characters remain on the display. This is often useful if you are planning to type in

something similar. In any case the characters disappear when when you hit ESC; if you want to get rid of them

immediately, hit an ESC and then a again.

Notice also that you can’t erase characters which you didn’t insert, and that you can’t backspace around the

end of a line. If you need to back up to the previous line to make a correction, just hit ESC and move the cursor back

to the previous line. After making the correction you can return to where you were and use the insert or append

command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character which is wrong or just

pick any character. Use the arrow keys to find the character, or get near the character with the word motion keys and

then either backspace (hit the BS key or ˆH or even just h) or SPACE (using the space bar) until the cursor is on the

character which is wrong. If the character is not needed then hit the x key; this deletes the character from the file. It

is analogous to the way you x out characters when you make mistakes on a typewriter (except it’s not as messy).

If the character is incorrect, you can replace it with the correct character by giving the command rc, where c is

replaced by the correct character. Finally if the character which is incorrect should be replaced by more than one

character, giv e the command s which substitutes a string of characters, ending with ESC, for it. If there are a small

number of characters which are wrong you can precede s with a count of the number of characters to be replaced.

Counts are also useful with x to specify the number of characters to be deleted.

3.3. More corrections: operators

You already know almost enough to make changes at a higher level. All you need to know now is that the d

key acts as a delete operator. Try the command dw to delete a word. Try hitting . a few times. Notice that this

repeats the effect of the dw. The command . repeats the last command which made a change. You can remember it

by analogy with an ellipsis ‘...’.

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE. This deletes a single

character, and is equivalent to the x command.

Another very useful operator is c or change. The command cw thus changes the text of a single word. You

follow it by the replacement text ending with an ESC. Find a word which you can change to another, and try this

now. Notice that the end of the text to be changed was marked with the character ‘$’ so that you can see this as you

are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a line which you want to delete, and type dd, the d

operator twice. This will delete the line. If you are on a dumb terminal, the editor may just erase the line on the

screen, replacing it with a line with only an @ on it. This line does not correspond to any line in your file, but only

acts as a place holder. It helps to avoid a lengthy redraw of the rest of the screen which would be necessary to close

up the hole created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this will change a whole line, erasing its previous contents and replacing

them with text you type up to an ESC.†

You can delete or change more than one line by preceding the dd or cc with a count, i.e. 5dd deletes 5 lines.

You can also give a command like dL to delete all the lines up to and including the last line on the screen, or d3L to

delete through the third from the bottom line. Try some commands like this now.* Notice that the editor lets you

† In fact, the character ˆH (backspace) always works to erase the last input character here, regardless of what your erase character is.

† The command S is a convenient synonym for for cc, by analogy with s. Think of S as a substitute on lines, while s is a substitute on characters.

* One subtle point here involves using the / search after a d. This will normally delete characters from the current position to the point of the

match. If what is desired is to delete whole lines including the two points, give the pattern as /pat/+0, a line address.

USD:11-8 An Introduction to Display Editing with Vi

know when you change a large number of lines so that you can see the extent of the change. The editor will also

always tell you when a change you make affects text which you cannot see.

3.5. Undoing

Now suppose that the last change which you made was incorrect; you could use the insert, delete and append

commands to put the correct material back. However, since it is often the case that we regret a change or make a

change incorrectly, the editor provides a u (undo) command to reverse the last change which you made. Try this a

few times, and give it twice in a row to notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of changes to a line, you

may decide that you would rather have the original state of the line back. The U command restores the current line

to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back; see the section on recovering lost

text below.

3.6. Summary

SPACE advance the cursor one position

ˆH backspace the cursor

ˆW erase a word during an insert

erase your erase (usually ˆH or #), erases a character during an insert

kill your kill (usually @, ˆX, or ˆU), kills the insert on this line

. repeats the changing command

O opens and inputs new lines, above the current

U undoes the changes you made to the current line

a appends text after the cursor

c changes the object you specify to the following text

d deletes the object you specify

i inserts text before the cursor

o opens and inputs new lines, below the current

u undoes the last change

4. Moving about; rearranging and duplicating text

4.1. Low lev el character motions

Now move the cursor to a line where there is a punctuation or a bracketing character such as a parenthesis or a

comma or period. Try the command fx where x is this character. This command finds the next x character to the

right of the cursor in the current line. Try then hitting a ;, which finds the next instance of the same character. By

using the f command and then a sequence of ;’s you can often get to a particular place in a line much faster than with

a sequence of word motions or SPACEs. There is also a F command, which is like f, but searches backward. The ;

command repeats F also.

When you are operating on the text in a line it is often desirable to deal with the characters up to, but not

including, the first instance of a character. Try dfx for some x now and notice that the x character is deleted. Undo

this with u and then try dtx; the t here stands for to, i.e. delete up to the next x, but not the x. The command T is

the reverse of t.

When working with the text of a single line, an ↑ moves the cursor to the first non-white position on the line,

and a $ moves it to the end of the line. Thus $a will append new text at the end of the current line.

Your file may have tab (ˆI) characters in it. These characters are represented as a number of spaces expanding

to a tab stop, where tab stops are every 8 positions.* When the cursor is at a tab, it sits on the last of the several spa-

ces which represent that tab. Try moving the cursor back and forth over tabs so you understand how this works.

* This is settable by a command of the form :se ts=xCR, where x is 4 to set tabstops every four columns. This has effect on the screen representa-

tion within the editor.

An Introduction to Display Editing with Vi USD:11-9

On rare occasions, your file may have nonprinting characters in it. These characters are displayed in the same

way they are represented in this document, that is with a two character code, the first character of which is ‘ˆ’. On

the screen non-printing characters resemble a ‘ˆ’ character adjacent to another, but spacing or backspacing over the

character will reveal that the two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the setting of the beautify

option, if you attempt to insert them in your file. You can get a control character in the file by beginning an insert

and then typing a ˆV before the control character. The ˆV quotes the following character, causing it to be inserted

directly into the file.

4.2. Higher level text objects

In working with a document it is often advantageous to work in terms of sentences, paragraphs, and sections.

The operations (and) move to the beginning of the previous and next sentences respectively. Thus the command d)

will delete the rest of the current sentence; likewise d(will delete the previous sentence if you are at the beginning of

the current sentence, or the current sentence up to where you are if you are not at the beginning of the current sen-

tence.

A sentence is defined to end at a ‘.’, ‘!’ or ‘?’ which is followed by either the end of a line, or by two spaces.

Any number of closing ‘)’, ‘]’, ‘"’ and ‘´’ characters may appear after the ‘.’, ‘!’ or ‘?’ before the spaces or end of

line.

The operations { and } move over paragraphs and the operations [[and]] move over sections.†

A paragraph begins after each empty line, and also at each of a set of paragraph macros, specified by the pairs

of characters in the definition of the string valued option paragraphs. The default setting for this option defines the

paragraph macros of the −ms and −mm macro packages, i.e. the ‘.IP’, ‘.LP’, ‘.PP’ and ‘.QP’, ‘.P’ and ‘.LI’ macros.‡

Each paragraph boundary is also a sentence boundary. The sentence and paragraph commands can be given counts

to operate over groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally ‘.NH’, ‘.SH’, ‘.H’ and ‘.HU’,

and each line with a formfeed ˆL in the first column. Section boundaries are always line and paragraph boundaries

also.

Try experimenting with the sentence and paragraph commands until you are sure how they work. If you have

a large document, try looking through it using the section commands. The section commands interpret a preceding

count as a different window size in which to redraw the screen at the new location, and this window size is the base

size for newly drawn windows until another size is specified. This is very useful if you are on a slow terminal and

are looking for a particular section. You can give the first section command a small count to then see each succes-

sive section heading in a small window.

4.3. Rearranging and duplicating text

The editor has a single unnamed buffer where the last deleted or changed away text is sav ed, and a set of

named buffers a−z which you can use to save copies of text and to move text around in your file and between files.

The operator y yanks a copy of the object which follows into the unnamed buffer. If preceded by a buffer

name, "x y, where x here is replaced by a letter a−z, it places the text in the named buffer. The text can then be put

back in the file with the commands p and P; p puts the text after or below the cursor, while P puts the text before or

above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which partially spans more

than one line, then when you put the text back, it will be placed after the cursor (or before if you use P). If the

yanked text forms whole lines, they will be put back as whole lines, without changing the current line. In this case,

the put acts much like a o or O command.

Try the command YP. This makes a copy of the current line and leaves you on this copy, which is placed

before the current line. The command Y is a convenient abbreviation for yy. The command Yp will also make a

† The [[and]] operations require the operation character to be doubled because they can move the cursor far from where it currently is. While it

is easy to get back with the command ``, these commands would still be frustrating if they were easy to hit accidentally.

‡ You can easily change or extend this set of macros by assigning a different string to the paragraphs option in your EXINIT. See section 6.2 for

details. The ‘.bp’ directive is also considered to start a paragraph.

USD:11-10 An Introduction to Display Editing with Vi

copy of the current line, and place it after the current line. You can give Y a count of lines to yank, and thus dupli-

cate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in another. You can precede

a delete operation by the name of a buffer in which the text is to be stored as in "a5dd deleting 5 lines into the

named buffer a. You can then move the cursor to the eventual resting place of the these lines and do a "ap or "aP to

put them back. In fact, you can switch and edit another file before you put the lines back, by giving a command of

the form :e nameCR where name is the name of the other file you want to edit. You will have to write back the con-

tents of the current editor buffer (or discard them) if you have made changes before the editor will let you switch to

the other file. An ordinary delete command saves the text in the unnamed buffer, so that an ordinary put can move it

elsewhere. However, the unnamed buffer is lost when you change files, so to move text from one file to another you

should use an unnamed buffer.

4.4. Summary.

↑ first non-white on line

$ end of line

) forward sentence

} forward paragraph

]] forward section

(backward sentence

{ backward paragraph

[[backward section

fx find x forward in line

p put text back, after cursor or below current line

y yank operator, for copies and moves

tx up to x forward, for operators

Fx f backward in line

P put text back, before cursor or above current line

Tx t backward in line

5. High level commands

5.1. Writing, quitting, editing new files

So far we have seen how to enter vi and to write out our file using either ZZ or :wCR. The first exits from the

editor, (writing if changes were made), the second writes and stays in the editor.

If you have changed the editor’s copy of the file but do not wish to save your changes, either because you

messed up the file or decided that the changes are not an improvement to the file, then you can give the command

:q!CR to quit from the editor without writing the changes. You can also reedit the same file (starting over) by giving

the command :e!CR. These commands should be used only rarely, and with caution, as it is not possible to recover

the changes you have made after you discard them in this manner.

You can edit a different file without leaving the editor by giving the command :e nameCR. If you have not

written out your file before you try to do this, then the editor will tell you this, and delay editing the other file. You

can then give the command :wCR to save your work and then the :e nameCR command again, or carefully give the

command :e! nameCR, which edits the other file discarding the changes you have made to the current file. To hav e

the editor automatically save changes, include set autowrite in your EXINIT, and use :n instead of :e.

5.2. Escaping to a shell

You can get to a shell to execute a single command by giving a vi command of the form :!cmdCR. The system

will run the single command cmd and when the command finishes, the editor will ask you to hit a RETURN to con-

tinue. When you have finished looking at the output on the screen, you should hit RETURN and the editor will clear

the screen and redraw it. You can then continue editing. You can also give another : command when it asks you for

a RETURN; in this case the screen will not be redrawn.

An Introduction to Display Editing with Vi USD:11-11

If you wish to execute more than one command in the shell, then you can give the command :shCR. This will

give you a new shell, and when you finish with the shell, ending it by typing a ˆD, the editor will clear the screen and

continue.

On systems which support it, ˆZ will suspend the editor and return to the (top level) shell. When the editor is

resumed, the screen will be redrawn.

5.3. Marking and returning

The command `` returned to the previous place after a motion of the cursor by a command such as /, ? or G.

You can also mark lines in the file with single letter tags and return to these marks later by naming the tags. Try

marking the current line with the command mx, where you should pick some letter for x, say ‘a’. Then move the

cursor to a different line (any way you like) and hit `a. The cursor will return to the place which you marked.

Marks last only until you edit another file.

When using operators such as d and referring to marked lines, it is often desirable to delete whole lines rather

than deleting to the exact position in the line marked by m. In this case you can use the form ´x rather than `x. Used

without an operator, ´x will move to the first non-white character of the marked line; similarly ´´ moves to the first

non-white character of the line containing the previous context mark ``.

5.4. Adjusting the screen

If the screen image is messed up because of a transmission error to your terminal, or because some program

other than the editor wrote output to your terminal, you can hit a ˆL, the ASCII form-feed character, to cause the

screen to be refreshed.

On a dumb terminal, if there are @ lines in the middle of the screen as a result of line deletion, you may get

rid of these lines by typing ˆR to cause the editor to retype the screen, closing up these holes.

Finally, if you wish to place a certain line on the screen at the top middle or bottom of the screen, you can

position the cursor to that line, and then give a z command. You should follow the z command with a RETURN if you

want the line to appear at the top of the window, a . if you want it at the center, or a − if you want it at the bottom.

6. Special topics

6.1. Editing on slow terminals

When you are on a slow terminal, it is important to limit the amount of output which is generated to your

screen so that you will not suffer long delays, waiting for the screen to be refreshed. We hav e already pointed out

how the editor optimizes the updating of the screen during insertions on dumb terminals to limit the delays, and how

the editor erases lines to @ when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen option. You can force the editor to

use this mode even on faster terminals by giving the command :se slowCR. If your system is sluggish this helps

lessen the amount of output coming to your terminal. You can disable this option by :se noslowCR.

The editor can simulate an intelligent terminal on a dumb one. Try giving the command :se redrawCR. This

simulation generates a great deal of output and is generally tolerable only on lightly loaded systems and fast termi-

nals. You can disable this by giving the command

:se noredrawCR.

The editor also makes editing more pleasant at low speed by starting editing in a small window, and letting the

window expand as you edit. This works particularly well on intelligent terminals. The editor can expand the win-

dow easily when you insert in the middle of the screen on these terminals. If possible, try the editor on an intelligent

terminal to see how this works.

You can control the size of the window which is redrawn each time the screen is cleared by giving window

sizes as argument to the commands which cause large screen motions:

: / ? [[]] ` ´

Thus if you are searching for a particular instance of a common string in a file you can precede the first search com-

mand by a small number, say 3, and the editor will draw three line windows around each instance of the string which

USD:11-12 An Introduction to Display Editing with Vi

it locates.

You can easily expand or contract the window, placing the current line as you choose, by giving a number on a

z command, after the z and before the following RETURN, . or −. Thus the command z5. redraws the screen with the

current line in the center of a five line window.†

If the editor is redrawing or otherwise updating large portions of the display, you can interrupt this updating

by hitting a DEL or RUB as usual. If you do this you may partially confuse the editor about what is displayed on the

screen. You can still edit the text on the screen if you wish; clear up the confusion by hitting a ˆL; or move or search

again, ignoring the current state of the display.

See section 7.8 on open mode for another way to use the vi command set on slow terminals.

6.2. Options, set, and editor startup files

The editor has a set of options, some of which have been mentioned above. The most useful options are given

in the following table.

The options are of three kinds: numeric options, string options, and toggle options. You can set numeric and

string options by a statement of the form

set opt=val

and toggle options can be set or unset by statements of one of the forms

set opt

set noopt

Name Default Description

autoindent noai Supply indentation automatically

autowrite noaw Automatic write before :n, :ta, ˆ↑, !

ignorecase noic Ignore case in searching

lisp nolisp ({) } commands deal with S-expressions

list nolist Tabs print as ˆI; end of lines marked with $

magic nomagic The characters . [and * are special in scans

number nonu Lines are displayed prefixed with line numbers

paragraphs para=IPLPPPQPbpP LI Macro names which start paragraphs

redraw nore Simulate a smart terminal on a dumb one

sections sect=NHSHH HU Macro names which start new sections

shiftwidth sw=8 Shift distance for <, > and input ˆD and ˆT

showmatch nosm Show matching (or { as) or } is typed

slowopen slow Postpone display updates during inserts

term dumb The kind of terminal you are using.

These statements can be placed in your EXINIT in your environment, or given while you are running vi by preced-

ing them with a : and following them with a CR.

You can get a list of all options which you have changed by the command :setCR, or the value of a single

option by the command :set opt?CR. A list of all possible options and their values is generated by :set allCR. Set

can be abbreviated se. Multiple options can be placed on one line, e.g. :se ai aw nuCR.

Options set by the set command only last while you stay in the editor. It is common to want to have certain

options set whenever you use the editor. This can be accomplished by creating a list of ex commands† which are to

be run every time you start up ex, edit, or vi. A typical list includes a set command, and possibly a few map com-

mands. Since it is advisable to get these commands on one line, they can be separated with the | character, for exam-

ple:

set ai aw terse|map @ dd|map # x

which sets the options autoindent, autowrite, terse, (the set command), makes @ delete a line, (the first map), and

† Note that the command 5z. has an entirely different effect, placing line 5 in the center of a new window.

† All commands which start with : are ex commands.

An Introduction to Display Editing with Vi USD:11-13

makes # delete a character, (the second map). (See section 6.9 for a description of the map command) This string

should be placed in the variable EXINIT in your environment. If you use the shell csh, put this line in the file .login

in your home directory:

setenv EXINIT ´set ai aw terse|map @ dd|map # x´

If you use the standard shell sh, put these lines in the file .profile in your home directory:

EXINIT=´set ai aw terse|map @ dd|map # x´

export EXINIT

Of course, the particulars of the line would depend on which options you wanted to set.

6.3. Recovering lost lines

You might have a serious problem if you delete a number of lines and then regret that they were deleted.

Despair not, the editor saves the last 9 deleted blocks of text in a set of numbered registers 1−9. You can get the n’th

previous deleted text back in your file by the command "n p. The " here says that a buffer name is to follow, n is the

number of the buffer you wish to try (use the number 1 for now), and p is the put command, which puts text in the

buffer after the cursor. If this doesn’t bring back the text you wanted, hit u to undo this and then . (period) to repeat

the put command. In general the . command will repeat the last change you made. As a special case, when the last

command refers to a numbered text buffer, the . command increments the number of the buffer before repeating the

command. Thus a sequence of the form

"1pu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You can omit the u com-

mands here to gather up all this text in the buffer, or stop after any . command to keep just the then recovered text.

The command P can also be used rather than p to put the recovered text before rather than after the cursor.

6.4. Recovering lost files

If the system crashes, you can recover the work you were doing to within a few changes. You will normally

receive mail when you next login giving you the name of the file which has been saved for you. You should then

change to the directory where you were when the system crashed and give a command of the form:

% vi −r name

replacing name with the name of the file which you were editing. This will recover your work to a point near where

you left off.†

You can get a listing of the files which are saved for you by giving the command:

% vi −r

If there is more than one instance of a particular file saved, the editor gives you the newest instance each time you

recover it. You can thus get an older saved copy back by first recovering the newer copies.

For this feature to work, vi must be correctly installed by a super user on your system, and the mail program

must exist to receive mail. The invocation ‘‘vi -r’’ will not always list all saved files, but they can be recovered even

if they are not listed.

6.5. Continuous text input

When you are typing in large amounts of text it is convenient to have lines broken near the right margin auto-

matically. You can cause this to happen by giving the command :se wm=10CR. This causes all lines to be broken at

a space at least 10 columns from the right hand edge of the screen.

If the editor breaks an input line and you wish to put it back together you can tell it to join the lines with J.

You can give J a count of the number of lines to be joined as in 3J to join 3 lines. The editor supplies white space, if

appropriate, at the juncture of the joined lines, and leaves the cursor at this white space. You can kill the white space

† In rare cases, some of the lines of the file may be lost. The editor will give you the numbers of these lines and the text of the lines will be

replaced by the string ‘LOST’. These lines will almost always be among the last few which you changed. You can either choose to discard the

changes which you made (if they are easy to remake) or to replace the few lost lines by hand.

USD:11-14 An Introduction to Display Editing with Vi

with x if you don’t want it.

6.6. Features for editing programs

The editor has a number of commands for editing programs. The thing that most distinguishes editing of pro-

grams from editing of text is the desirability of maintaining an indented structure to the body of the program. The

editor has a autoindent facility for helping you generate correctly indented programs.

To enable this facility you can give the command :se aiCR. Now try opening a new line with o and type some

characters on the line after a few tabs. If you now start another line, notice that the editor supplies white space at the

beginning of the line to line it up with the previous line. You cannot backspace over this indentation, but you can

use ˆD key to backtab over the supplied indentation.

Each time you type ˆD you back up one position, normally to an 8 column boundary. This amount is settable;

the editor has an option called shiftwidth which you can set to change this value. Try giving the command :se

sw=4CR and then experimenting with autoindent again.

For shifting lines in the program left and right, there are operators < and >. These shift the lines you specify

right or left by one shiftwidth. Try << and >> which shift one line left or right, and <L and >L shifting the rest of

the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put the cursor at a left or

right parenthesis and hit %. This will show you the matching parenthesis. This works also for braces { and }, and

brackets [and].

If you are editing C programs, you can use the [[and]] keys to advance or retreat to a line starting with a {,

i.e. a function declaration at a time. When]] is used with an operator it stops after a line which starts with }; this is

sometimes useful with y]].

6.7. Filtering portions of the buffer

You can run system commands over portions of the buffer using the operator !. You can use this to sort lines

in the buffer, or to reformat portions of the buffer with a pretty-printer. Try typing in a list of random words, one per

line and ending them with a blank line. Back up to the beginning of the list, and then give the command !}sortCR.

This says to sort the next paragraph of material, and the blank line ends a paragraph.

6.8. Commands for editing LISP

If you are editing a LISP program you should set the option lisp by doing :se lispCR. This changes the (and)

commands to move backward and forward over s-expressions. The { and } commands are like (and) but don’t stop

at atoms. These can be used to skip to the next list, or through a comment quickly.

The autoindent option works differently for LISP, supplying indent to align at the first argument to the last

open list. If there is no such argument then the indent is two spaces more than the last level.

There is another option which is useful for typing in LISP, the showmatch option. Try setting it with :se smCR

and then try typing a ‘(’ some words and then a ‘)’. Notice that the cursor shows the position of the ‘(’ which

matches the ‘)’ briefly. This happens only if the matching ‘(’ is on the screen, and the cursor stays there for at most

one second.

The editor also has an operator to realign existing lines as though they had been typed in with lisp and autoin-

dent set. This is the = operator. Try the command =% at the beginning of a function. This will realign all the lines

of the function declaration.

When you are editing LISP,, the [[and]] advance and retreat to lines beginning with a (, and are useful for

dealing with entire function definitions.

6.9. Macros

Vi has a parameterless macro facility, which lets you set it up so that when you hit a single keystroke, the edi-

tor will act as though you had hit some longer sequence of keys. You can set this up if you find yourself typing the

same sequence of commands repeatedly.

An Introduction to Display Editing with Vi USD:11-15

Briefly, there are two flavors of macros:

a) Ones where you put the macro body in a buffer register, say x. You can then type @x to invoke the macro.

The @ may be followed by another @ to repeat the last macro.

b) You can use the map command from vi (typically in your EXINIT) with a command of the form:

:map lhs rhsCR

mapping lhs into rhs. There are restrictions: lhs should be one keystroke (either 1 character or one function

key) since it must be entered within one second (unless notimeout is set, in which case you can type it as

slowly as you wish, and vi will wait for you to finish it before it echoes anything). The lhs can be no longer

than 10 characters, the rhs no longer than 100. To get a space, tab or newline into lhs or rhs you should

escape them with a ˆV. (It may be necessary to double the ˆV if the map command is given inside vi, rather

than in ex.) Spaces and tabs inside the rhs need not be escaped.

Thus to make the q key write and exit the editor, you can give the command

:map q :wqˆVˆVCR CR

which means that whenever you type q, it will be as though you had typed the four characters :wqCR. A ˆV’s is

needed because without it the CR would end the : command, rather than becoming part of the map definition. There

are two ˆV’s because from within vi, two ˆV’s must be typed to get one. The first CR is part of the rhs, the second

terminates the : command.

Macros can be deleted with

unmap lhs

If the lhs of a macro is ‘‘#0’’ through ‘‘#9’’, this maps the particular function key instead of the 2 character

‘‘#’’ sequence. So that terminals without function keys can access such definitions, the form ‘‘#x’’ will mean func-

tion key x on all terminals (and need not be typed within one second.) The character ‘‘#’’ can be changed by using a

macro in the usual way:

:map ˆVˆVˆI #

to use tab, for example. (This won’t affect the map command, which still uses #, but just the invocation from visual

mode.

The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a ‘!’ after the word map causes the mapping to apply to input mode, rather than command mode.

Thus, to arrange for ˆT to be the same as 4 spaces in input mode, you can type:

:map ˆT ˆVb/ b/ b/ b/

where b/ is a blank. The ˆV is necessary to prevent the blanks from being taken as white space between the lhs and

rhs.

7. Word Abbreviations

A feature similar to macros in input mode is word abbreviation. This allows you to type a short word and

have it expanded into a longer word or words. The commands are :abbreviate and :unabbreviate (:ab and :una)

and have the same syntax as :map. For example:

:ab eecs Electrical Engineering and Computer Sciences

causes the word ‘eecs’ to always be changed into the phrase ‘Electrical Engineering and Computer Sciences’. Word

abbreviation is different from macros in that only whole words are affected. If ‘eecs’ were typed as part of a larger

word, it would be left alone. Also, the partial word is echoed as it is typed. There is no need for an abbreviation to

be a single keystroke, as it should be with a macro.

7.1. Abbreviations

The editor has a number of short commands which abbreviate longer commands which we have introduced

here. You can find these commands easily on the quick reference card. They often save a bit of typing and you can

USD:11-16 An Introduction to Display Editing with Vi

learn them as convenient.

8. Nitty-gritty details

8.1. Line representation in the display

The editor folds long logical lines onto many physical lines in the display. Commands which advance lines

advance logical lines and will skip over all the segments of a line in one motion. The command | moves the cursor

to a specific column, and may be useful for getting near the middle of a long line to split it in half. Try 80| on a line

which is more than 80 columns long.†

The editor only puts full lines on the display; if there is not enough room on the display to fit a logical line, the

editor leaves the physical line empty, placing only an @ on the line as a place holder. When you delete lines on a

dumb terminal, the editor will often just clear the lines to @ to save time (rather than rewriting the rest of the

screen.) You can always maximize the information on the screen by giving the ˆR command.

If you wish, you can have the editor place line numbers before each line on the display. Giv e the command

:se nuCR to enable this, and the command :se nonuCR to turn it off. You can have tabs represented as ˆI and the

ends of lines indicated with ‘$’ by giving the command :se listCR; :se nolistCR turns this off.

Finally, lines consisting of only the character ‘˜’ are displayed when the last line in the file is in the middle of

the screen. These represent physical lines which are past the logical end of file.

8.2. Counts

Most vi commands will use a preceding count to affect their behavior in some way. The following table gives

the common ways in which the counts are used:

new window size : / ? [[]] ` ´

scroll amount ˆD ˆU

line/column number z G |

repeat effect most of the rest

The editor maintains a notion of the current default window size. On terminals which run at speeds greater

than 1200 baud the editor uses the full terminal screen. On terminals which are slower than 1200 baud (most dialup

lines are in this group) the editor uses 8 lines as the default window size. At 1200 baud the default is 16 lines.

This size is the size used when the editor clears and refills the screen after a search or other motion moves far

from the edge of the current window. The commands which take a new window size as count all often cause the

screen to be redrawn. If you anticipate this, but do not need as large a window as you are currently using, you may

wish to change the screen size by specifying the new size before these commands. In any case, the number of lines

used on the screen will expand if you move off the top with a − or similar command or off the bottom with a com-

mand such as RETURN or ˆD. The window will revert to the last specified size the next time it is cleared and

refilled.†

The scroll commands ˆD and ˆU likewise remember the amount of scroll last specified, using half the basic

window size initially. The simple insert commands use a count to specify a repetition of the inserted text. Thus

10a+−−−−ESC will insert a grid-like string of text. A few commands also use a preceding count as a line or column

number.

Except for a few commands which ignore any counts (such as ˆR), the rest of the editor commands use a count

to indicate a simple repetition of their effect. Thus 5w advances five words on the current line, while 5RETURN

advances five lines. A very useful instance of a count as a repetition is a count given to the . command, which

repeats the last changing command. If you do dw and then 3., you will delete first one and then three words. You

can then delete two more words with 2..

† You can make long lines very easily by using J to join together short lines.

† But not by a ˆL which just redraws the screen as it is.

An Introduction to Display Editing with Vi USD:11-17

8.3. More file manipulation commands

The following table lists the file manipulation commands which you can use when you are in vi.

:w write back changes

:wq write and quit

:x write (if necessary) and quit (same as ZZ).

:e name edit file name

:e! reedit, discarding changes

:e + name edit, starting at end

:e +n edit, starting at line n

:e # edit alternate file

:w name write file name

:w! name overwrite file name

:x,yw name write lines x through y to name

:r name read file name into buffer

:r !cmd read output of cmd into buffer

:n edit next file in argument list

:n! edit next file, discarding changes to current

:n args specify new argument list

:ta tag edit file containing tag tag, at tag

All of these commands are followed by a CR or ESC. The most basic commands are :w and :e. A normal editing

session on a single file will end with a ZZ command. If you are editing for a long period of time you can give :w

commands occasionally after major amounts of editing, and then finish with a ZZ. When you edit more than one

file, you can finish with one with a :w and start editing a new file by giving a :e command, or set autowrite and use

:n <file>.

If you make changes to the editor’s copy of a file, but do not wish to write them back, then you must give an !

after the command you would otherwise use; this forces the editor to discard any changes you have made. Use this

carefully.

The :e command can be given a + argument to start at the end of the file, or a +n argument to start at line n . In

actuality, n may be any editor command not containing a space, usefully a scan like +/pat or +?pat. In forming new

names to the e command, you can use the character % which is replaced by the current file name, or the character #

which is replaced by the alternate file name. The alternate file name is generally the last name you typed other than

the current file. Thus if you try to do a :e and get a diagnostic that you haven’t written the file, you can give a :w

command and then a :e # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that bound the range to be written using ˆG,

and giving these numbers after the : and before the w, separated by ,’s. You can also mark these lines with m and

then use an address of the form ´x,´y on the w command here.

You can read another file into the buffer after the current line by using the :r command. You can similarly

read in the output from a command, just use !cmd instead of a file name.

If you wish to edit a set of files in succession, you can give all the names on the command line, and then edit

each one in turn using the command :n. It is also possible to respecify the list of files to be edited by giving the :n

command a list of file names, or a pattern to be expanded as you would have giv en it on the initial vi command.

If you are editing large programs, you will find the :ta command very useful. It utilizes a data base of func-

tion names and their locations, which can be created by programs such as ctags, to quickly find a function whose

name you give. If the :ta command will require the editor to switch files, then you must :w or abandon any changes

before switching. You can repeat the :ta command without any arguments to look for the same tag again.

8.4. More about searching for strings

When you are searching for strings in the file with / and ?, the editor normally places you at the next or previ-

ous occurrence of the string. If you are using an operator such as d, c or y, then you may well wish to affect lines up

to the line before the line containing the pattern. You can give a search of the form /pat/−n to refer to the n’th line

USD:11-18 An Introduction to Display Editing with Vi

before the next line containing pat, or you can use + instead of − to refer to the lines after the one containing pat. If

you don’t giv e a line offset, then the editor will affect characters up to the match place, rather than whole lines; thus

use ‘‘+0’’ to affect to the line which matches.

You can have the editor ignore the case of words in the searches it does by giving the command :se icCR. The

command :se noicCR turns this off.

Strings given to searches may actually be regular expressions. If you do not want or need this facility, you

should

set nomagic

in your EXINIT. In this case, only the characters ↑ and $ are special in patterns. The character \ is also then special

(as it is most everywhere in the system), and may be used to get at the an extended pattern matching facility. It is

also necessary to use a \ before a / in a forward scan or a ? in a backward scan, in any case. The following table

gives the extended forms when magic is set.

↑ at beginning of pattern, matches beginning of line

$ at end of pattern, matches end of line

. matches any character

\< matches the beginning of a word

\> matches the end of a word

[str] matches any single character in str

[↑str] matches any single character not in str

[x−y] matches any character between x and y

* matches any number of the preceding pattern

If you use nomagic mode, then the . [and * primitives are given with a preceding \.

8.5. More about input mode

There are a number of characters which you can use to make corrections during input mode. These are sum-

marized in the following table.

ˆH deletes the last input character

ˆW deletes the last input word, defined as by b

erase your erase character, same as ˆH

kill your kill character, deletes the input on this line

\ escapes a following ˆH and your erase and kill

ESC ends an insertion

DEL interrupts an insertion, terminating it abnormally

CR starts a new line

ˆD backtabs over autoindent

0ˆD kills all the autoindent

↑ˆD same as 0ˆD, but restores indent next line

ˆV quotes the next non-printing character into the file

The most usual way of making corrections to input is by typing ˆH to correct a single character, or by typing

one or more ˆW’s to back over incorrect words. If you use # as your erase character in the normal system, it will

work like ˆH.

Your system kill character, normally @, ˆX or ˆU, will erase all the input you have giv en on the current line.

In general, you can neither erase input back around a line boundary nor can you erase characters which you did not

insert with this insertion command. To make corrections on the previous line after a new line has been started you

can hit ESC to end the insertion, move over and make the correction, and then return to where you were to continue.

The command A which appends at the end of the current line is often useful for continuing.

An Introduction to Display Editing with Vi USD:11-19

If you wish to type in your erase or kill character (say # or @) then you must precede it with a \, just as you

would do at the normal system command level. A more general way of typing non-printing characters into the file is

to precede them with a ˆV. The ˆV echoes as a ↑ character on which the cursor rests. This indicates that the editor

expects you to type a control character. In fact you may type any character and it will be inserted into the file at that

point.*

If you are using autoindent you can backtab over the indent which it supplies by typing a ˆD. This backs up to

a shiftwidth boundary. This only works immediately after the supplied autoindent.

When you are using autoindent you may wish to place a label at the left margin of a line. The way to do this

easily is to type ↑ and then ˆD. The editor will move the cursor to the left margin for one line, and restore the previ-

ous indent on the next. You can also type a 0 followed immediately by a ˆD if you wish to kill all the indent and not

have it come back on the next line.

8.6. Upper case only terminals

If your terminal has only upper case, you can still use vi by using the normal system convention for typing on

such a terminal. Characters which you normally type are converted to lower case, and you can type upper case let-

ters by preceding them with a \. The characters { ˜ } | ` are not available on such terminals, but you can escape them

as \(\↑ \) \! \´. These characters are represented on the display in the same way they are typed.‡

8.7. Vi and ex

Vi is actually one mode of editing within the editor ex. When you are running vi you can escape to the line

oriented editor of ex by giving the command Q. All of the : commands which were introduced above are available

in ex. Likewise, most ex commands can be invoked from vi using :. Just give them without the : and follow them

with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic and be left in the

command mode of ex. You can then save your work and quit if you wish by giving a command x after the : which

ex prompts you with, or you can reenter vi by giving ex a vi command.

There are a number of things which you can do more easily in ex than in vi. Systematic changes in line ori-

ented material are particularly easy. You can read the advanced editing documents for the editor ed to find out a lot

more about this style of editing. Experienced users often mix their use of ex command mode and vi command mode

to speed the work they are doing.

8.8. Open mode: vi on hardcopy terminals and ‘‘glass tty’s’’ ‡

If you are on a hardcopy terminal or a terminal which does not have a cursor which can move off the bottom

line, you can still use the command set of vi, but in a different mode. When you give a vi command, the editor will

tell you that it is using open mode. This name comes from the open command in ex, which is used to get into the

same mode.

The only difference between visual mode and open mode is the way in which the text is displayed.

In open mode the editor uses a single line window into the file, and moving backward and forward in the file

causes new lines to be displayed, always below the current line. Tw o commands of vi work differently in open: z

and ˆR. The z command does not take parameters, but rather draws a window of context around the current line and

then returns you to the current line.

If you are on a hardcopy terminal, the ˆR command will retype the current line. On such terminals, the editor

normally uses two lines to represent the current line. The first line is a copy of the line as you started to edit it, and

you work on the line below this line. When you delete characters, the editor types a number of \’s to show you the

characters which are deleted. The editor also reprints the current line soon after such changes so that you can see

what the line looks like again.

* This is not quite true. The implementation of the editor does not allow the NULL (ˆ@) character to appear in files. Also the LF (linefeed or ˆJ)

character is used by the editor to separate lines in the file, so it cannot appear in the middle of a line. You can insert any other character, howev er,

if you wait for the editor to echo the ↑ before you type the character. In fact, the editor will treat a following letter as a request for the corre-

sponding control character. This is the only way to type ˆS or ˆQ, since the system normally uses them to suspend and resume output and never

gives them to the editor to process.

‡ The \ character you give will not echo until you type another key.

USD:11-20 An Introduction to Display Editing with Vi

It is sometimes useful to use this mode on very slow terminals which can support vi in the full screen mode.

You can do this by entering ex and using an open command.

Acknowledgements

Bruce Englar encouraged the early development of this display editor. Peter Kessler helped bring sanity to

version 2’s command layout. Bill Joy wrote versions 1 and 2.0 through 2.7, and created the framework that users

see in the present editor. Mark Horton added macros and other features and made the editor work on a large number

of terminals and Unix systems.

Appendix: character functions

This appendix gives the uses the editor makes of each character. The characters are presented in their order in

the ASCII character set: Control characters come first, then most special characters, then the digits, upper and then

lower case characters.

For each character we tell a meaning it has as a command and any meaning it has during an insert. If it has

only meaning as a command, then only this is discussed. Section numbers in parentheses indicate where the charac-

ter is discussed; a ‘f’ after the section number means that the character is mentioned in a footnote.

ˆ@ Not a command character. If typed as the first character of an insertion it is replaced with the last

text inserted, and the insert terminates. Only 128 characters are saved from the last insert; if more

characters were inserted the mechanism is not available. A ˆ@ cannot be part of the file due to

the editor implementation (7.5f).

ˆA Unused.

ˆB Backward window. A count specifies repetition. Tw o lines of continuity are kept if possible (2.1,

6.1, 7.2).

ˆC Unused.

ˆD As a command, scrolls down a half-window of text. A count gives the number of (logical) lines

to scroll, and is remembered for future ˆD and ˆU commands (2.1, 7.2). During an insert, back-

tabs over autoindent white space at the beginning of a line (6.6, 7.5); this white space cannot be

backspaced over.

ˆE Exposes one more line below the current screen in the file, leaving the cursor where it is if possi-

ble. (Version 3 only.)

ˆF Forward window. A count specifies repetition. Tw o lines of continuity are kept if possible (2.1,

6.1, 7.2).

ˆG Equivalent to :fCR, printing the current file, whether it has been modified, the current line number

and the number of lines in the file, and the percentage of the way through the file that you are.

ˆH (BS) Same as left arrow. (See h). During an insert, eliminates the last input character, backing over it

but not erasing it; it remains so you can see what you typed if you wish to type something only

slightly different (3.1, 7.5).

ˆI (TAB) Not a command character. When inserted it prints as some number of spaces. When the cursor is

at a tab character it rests at the last of the spaces which represent the tab. The spacing of tabstops

is controlled by the tabstop option (4.1, 6.6).

ˆJ (LF) Same as down arrow (see j).

ˆK Unused.

ˆL The ASCII formfeed character, this causes the screen to be cleared and redrawn. This is useful

after a transmission error, if characters typed by a program other than the editor scramble the

An Introduction to Display Editing with Vi USD:11-21

screen, or after output is stopped by an interrupt (5.4, 7.2f).

ˆM (CR) A carriage return advances to the next line, at the first non-white position in the line. Given a

count, it advances that many lines (2.3). During an insert, a CR causes the insert to continue onto

another line (3.1).

ˆN Same as down arrow (see j).

ˆO Unused.

ˆP Same as up arrow (see k).

ˆQ Not a command character. In input mode, ˆQ quotes the next character, the same as ˆV, except

that some teletype drivers will eat the ˆQ so that the editor never sees it.

ˆR Redraws the current screen, eliminating logical lines not corresponding to physical lines (lines

with only a single @ character on them). On hardcopy terminals in open mode, retypes the cur-

rent line (5.4, 7.2, 7.8).

ˆS Unused. Some teletype drivers use ˆS to suspend output until pressed.ˆQis

ˆT Not a command character. During an insert, with autoindent set and at the beginning of the line,

inserts shiftwidth white space.

ˆU Scrolls the screen up, inverting ˆD which scrolls down. Counts work as they do for ˆD, and the

previous scroll amount is common to both. On a dumb terminal, ˆU will often necessitate clear-

ing and redrawing the screen further back in the file (2.1, 7.2).

ˆV Not a command character. In input mode, quotes the next character so that it is possible to insert

non-printing and special characters into the file (4.2, 7.5).

ˆW Not a command character. During an insert, backs up as b would in command mode; the deleted

characters remain on the display (see ˆH) (7.5).

ˆX Unused.

ˆY Exposes one more line above the current screen, leaving the cursor where it is if possible. (No

mnemonic value for this key; howev er, it is next to ˆU which scrolls up a bunch.) (Version 3

only.)

ˆZ If supported by the Unix system, stops the editor, exiting to the top level shell. Same as :stopCR.

Otherwise, unused.

ˆ[(ESC) Cancels a partially formed command, such as a z when no following character has yet been given;

terminates inputs on the last line (read by commands such as : / and ?); ends insertions of new

text into the buffer. If an ESC is given when quiescent in command state, the editor rings the bell

or flashes the screen. You can thus hit ESC if you don’t know what is happening till the editor

rings the bell. If you don’t know if you are in insert mode you can type ESCa, and then material to

be input; the material will be inserted correctly whether or not you were in insert mode when you

started (1.5, 3.1, 7.5).

ˆ\ Unused.

ˆ] Searches for the word which is after the cursor as a tag. Equivalent to typing :ta, this word, and

then a CR. Mnemonically, this command is ‘‘go right to’’ (7.3).

ˆ↑ Equivalent to :e #CR, returning to the previous position in the last edited file, or editing a file

which you specified if you got a ‘No write since last change diagnostic’ and do not want to have

to type the file name again (7.3). (You have to do a :w before ˆ↑ will work in this case. If you do

not wish to write the file you should do :e! #CR instead.)

ˆ_ Unused. Reserved as the command character for the Tektronix 4025 and 4027 terminal.

SPACE Same as right arrow (see l).

! An operator, which processes lines from the buffer with reformatting commands. Follow ! with

the object to be processed, and then the command name terminated by CR. Doubling ! and pre-

ceding it by a count causes count lines to be filtered; otherwise the count is passed on to the

object after the !. Thus 2!}fmtCR reformats the next two paragraphs by running them through the

USD:11-22 An Introduction to Display Editing with Vi

program fmt. If you are working on LISP, the command !%grindCR,* given at the beginning of a

function, will run the text of the function through the LISP grinder (6.7, 7.3). To read a file or the

output of a command into the buffer use :r (7.3). To simply execute a command use :! (7.3).

" Precedes a named buffer specification. There are named buffers 1−9 used for saving deleted text

and named buffers a−z into which you can place text (4.3, 6.3)

The macro character which, when followed by a number, will substitute for a function key on ter-

minals without function keys (6.9). In input mode, if this is your erase character, it will delete the

last character you typed in input mode, and must be preceded with a \ to insert it, since it nor-

mally backs over the last input character you gav e.

$ Moves to the end of the current line. If you :se listCR, then the end of each line will be shown by

printing a $ after the end of the displayed text in the line. Given a count, advances to the count’th

following end of line; thus 2$ advances to the end of the following line.

% Moves to the parenthesis or brace { } which balances the parenthesis or brace at the current cursor

position.

& A synonym for :&CR, by analogy with the ex & command.

´ When followed by a ´ returns to the previous context at the beginning of a line. The previous con-

text is set whenever the current line is moved in a non-relative way. When followed by a letter

a−z, returns to the line which was marked with this letter with a m command, at the first non-

white character in the line. (2.2, 5.3). When used with an operator such as d, the operation takes

place over complete lines; if you use `, the operation takes place from the exact marked place to

the current cursor position within the line.

(Retreats to the beginning of a sentence, or to the beginning of a LISP s-expression if the lisp option

is set. A sentence ends at a . ! or ? which is followed by either the end of a line or by two spaces.

Any number of closing)] " and ´ characters may appear after the . ! or ?, and before the spaces

or end of line. Sentences also begin at paragraph and section boundaries (see { and [[below). A

count advances that many sentences (4.2, 6.8).

) Advances to the beginning of a sentence. A count repeats the effect. See (above for the defini-

tion of a sentence (4.2, 6.8).

* Unused.

+ Same as CR when used as a command.

, Reverse of the last f F t or T command, looking the other way in the current line. Especially use-

ful after hitting too many ; characters. A count repeats the search.

− Retreats to the previous line at the first non-white character. This is the inverse of + and RETURN.

If the line moved to is not on the screen, the screen is scrolled, or cleared and redrawn if this is

not possible. If a large amount of scrolling would be required the screen is also cleared and

redrawn, with the current line at the center (2.3).

. Repeats the last command which changed the buffer. Especially useful when deleting words or

lines; you can delete some words/lines and then hit . to delete more and more words/lines. Given

a count, it passes it on to the command being repeated. Thus after a 2dw, 3. deletes three words

(3.3, 6.3, 7.2, 7.4).

/ Reads a string from the last line on the screen, and scans forward for the next occurrence of this

string. The normal input editing sequences may be used during the input on the bottom line; an

returns to command state without ever searching. The search begins when you hit CR to terminate

the pattern; the cursor moves to the beginning of the last line to indicate that the search is in

progress; the search may then be terminated with a DEL or RUB, or by backspacing when at the

beginning of the bottom line, returning the cursor to its initial position. Searches normally wrap

end-around to find a string anywhere in the buffer.

*Both fmt and grind are Berkeley programs and may not be present at all installations.

An Introduction to Display Editing with Vi USD:11-23

When used with an operator the enclosed region is normally affected. By mentioning an offset

from the line matched by the pattern you can force whole lines to be affected. To do this give a

pattern with a closing a closing / and then an offset +n or −n.

To include the character / in the search string, you must escape it with a preceding \. A ↑ at the

beginning of the pattern forces the match to occur at the beginning of a line only; this speeds the

search. A $ at the end of the pattern forces the match to occur at the end of a line only. More

extended pattern matching is available, see section 7.4; unless you set nomagic in your .exrc file

you will have to preceed the characters . [* and ˜ in the search pattern with a \ to get them to

work as you would naively expect (1.5, 2,2, 6.1, 7.2, 7.4).

0 Moves to the first character on the current line. Also used, in forming numbers, after an initial

1−9.

1−9 Used to form numeric arguments to commands (2.3, 7.2).

: A prefix to a set of commands for file and option manipulation and escapes to the system. Input

is given on the bottom line and terminated with an CR, and the command then executed. You can

return to where you were by hitting DEL or RUB if you hit : accidentally (see primarily 6.2 and

7.3).

; Repeats the last single character find which used f F t or T. A count iterates the basic scan (4.1).

< An operator which shifts lines left one shiftwidth, normally 8 spaces. Like all operators, affects

lines when repeated, as in <<. Counts are passed through to the basic object, thus 3<< shifts three

lines (6.6, 7.2).

= Reindents line for LISP, as though they were typed in with lisp and autoindent set (6.8).

> An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects lines when

repeated as in >>. Counts repeat the basic object (6.6, 7.2).

? Scans backwards, the opposite of /. See the / description above for details on scanning (2.2, 6.1,

7.4).

@ A macro character (6.9). If this is your kill character, you must escape it with a \ to type it in dur-

ing input mode, as it normally backs over the input you have giv en on the current line (3.1, 3.4,

7.5).

A Appends at the end of line, a synonym for $a (7.2).

B Backs up a word, where words are composed of non-blank sequences, placing the cursor at the

beginning of the word. A count repeats the effect (2.4).

C Changes the rest of the text on the current line; a synonym for c$.

D Deletes the rest of the text on the current line; a synonym for d$.

E Moves forward to the end of a word, defined as blanks and non-blanks, like B and W. A count

repeats the effect.

F Finds a single following character, backwards in the current line. A count repeats this search that

many times (4.1).

G Goes to the line number given as preceding argument, or the end of the file if no preceding count

is given. The screen is redrawn with the new current line in the center if necessary (7.2).

H Home arrow. Homes the cursor to the top line on the screen. If a count is given, then the cursor

is moved to the count’th line on the screen. In any case the cursor is moved to the first non-white

character on the line. If used as the target of an operator, full lines are affected (2.3, 3.2).

I Inserts at the beginning of a line; a synonym for ↑i.

J Joins together lines, supplying appropriate white space: one space between words, two spaces

after a ., and no spaces at all if the first character of the joined on line is). A count causes that

many lines to be joined rather than the default two (6.5, 7.1f).

K Unused.

USD:11-24 An Introduction to Display Editing with Vi

L Moves the cursor to the first non-white character of the last line on the screen. With a count, to

the first non-white of the count’th line from the bottom. Operators affect whole lines when used

with L (2.3).

M Moves the cursor to the middle line on the screen, at the first non-white position on the line (2.3).

N Scans for the next match of the last pattern given to / or ?, but in the reverse direction; this is the

reverse of n.

O Opens a new line above the current line and inputs text there up to an ESC. A count can be used

on dumb terminals to specify a number of lines to be opened; this is generally obsolete, as the

slowopen option works better (3.1).

P Puts the last deleted text back before/above the cursor. The text goes back as whole lines above

the cursor if it was deleted as whole lines. Otherwise the text is inserted between the characters

before and at the cursor. May be preceded by a named buffer specification "x to retrieve the con-

tents of the buffer; buffers 1−9 contain deleted material, buffers a−z are available for general use

(6.3).

Q Quits from vi to ex command mode. In this mode, whole lines form commands, ending with a

RETURN. You can give all the : commands; the editor supplies the : as a prompt (7.7).

R Replaces characters on the screen with characters you type (overlay fashion). Terminates with an

ESC.

S Changes whole lines, a synonym for cc. A count substitutes for that many lines. The lines are

saved in the numeric buffers, and erased on the screen before the substitution begins.

T Takes a single following character, locates the character before the cursor in the current line, and

places the cursor just after that character. A count repeats the effect. Most useful with operators

such as d (4.1).

U Restores the current line to its state before you started changing it (3.5).

V Unused.

W Moves forward to the beginning of a word in the current line, where words are defined as

sequences of blank/non-blank characters. A count repeats the effect (2.4).

X Deletes the character before the cursor. A count repeats the effect, but only characters on the cur-

rent line are deleted.

Y Yanks a copy of the current line into the unnamed buffer, to be put back by a later p or P; a very

useful synonym for yy. A count yanks that many lines. May be preceded by a buffer name to put

lines in that buffer (7.4).

ZZ Exits the editor. (Same as :xCR.) If any changes have been made, the buffer is written out to the

current file. Then the editor quits.

[[Backs up to the previous section boundary. A section begins at each macro in the sections option,

normally a ‘.NH’ or ‘.SH’ and also at lines which which start with a formfeed ˆL. Lines begin-

ning with { also stop [[; this makes it useful for looking backwards, a function at a time, in C pro-

grams. If the option lisp is set, stops at each (at the beginning of a line, and is thus useful for

moving backwards at the top level LISP objects. (4.2, 6.1, 6.6, 7.2).

\ Unused.

]] Forward to a section boundary, see [[for a definition (4.2, 6.1, 6.6, 7.2).

↑ Moves to the first non-white position on the current line (4.4).

_ Unused.

` When followed by a ` returns to the previous context. The previous context is set whenever the

current line is moved in a non-relative way. When followed by a letter a−z, returns to the position

which was marked with this letter with a m command. When used with an operator such as d, the

operation takes place from the exact marked place to the current position within the line; if you

use ´, the operation takes place over complete lines (2.2, 5.3).

An Introduction to Display Editing with Vi USD:11-25

a Appends arbitrary text after the current cursor position; the insert can continue onto multiple lines

by using RETURN within the insert. A count causes the inserted text to be replicated, but only if

the inserted text is all on one line. The insertion terminates with an ESC (3.1, 7.2).

b Backs up to the beginning of a word in the current line. A word is a sequence of alphanumerics,

or a sequence of special characters. A count repeats the effect (2.4).

c An operator which changes the following object, replacing it with the following input text up to

an ESC. If more than part of a single line is affected, the text which is changed away is sav ed in

the numeric named buffers. If only part of the current line is affected, then the last character to be

changed away is marked with a $. A count causes that many objects to be affected, thus both 3c)

and c3) change the following three sentences (7.4).

d An operator which deletes the following object. If more than part of a line is affected, the text is

saved in the numeric buffers. A count causes that many objects to be affected; thus 3dw is the

same as d3w (3.3, 3.4, 4.1, 7.4).

e Advances to the end of the next word, defined as for b and w. A count repeats the effect (2.4,

3.1).

f Finds the first instance of the next character following the cursor on the current line. A count

repeats the find (4.1).

g Unused.

Arrow keys h, j, k, l, and H.

h Left arrow. Moves the cursor one character to the left. Like the other arrow keys, either h, the

left arrow key, or one of the synonyms (ˆH) has the same effect. On v2 editors, arrow keys on

certain kinds of terminals (those which send escape sequences, such as vt52, c100, or hp) cannot

be used. A count repeats the effect (3.1, 7.5).

i Inserts text before the cursor, otherwise like a (7.2).

j Down arrow. Moves the cursor one line down in the same column. If the position does not exist,

vi comes as close as possible to the same column. Synonyms include ˆJ (linefeed) and ˆN.

k Up arrow. Moves the cursor one line up. ˆP is a synonym.

l Right arrow. Moves the cursor one character to the right. SPACE is a synonym.

m Marks the current position of the cursor in the mark register which is specified by the next charac-

ter a−z. Return to this position or use with an operator using ` or ´ (5.3).

n Repeats the last / or ? scanning commands (2.2).

o Opens new lines below the current line; otherwise like O (3.1).

p Puts text after/below the cursor; otherwise like P (6.3).

q Unused.

r Replaces the single character at the cursor with a single character you type. The new character

may be a RETURN; this is the easiest way to split lines. A count replaces each of the following

count characters with the single character given; see R above which is the more usually useful

iteration of r (3.2).

s Changes the single character under the cursor to the text which follows up to an ESC; giv en a

count, that many characters from the current line are changed. The last character to be changed is

marked with $ as in c (3.2).

t Advances the cursor upto the character before the next character typed. Most useful with opera-

tors such as d and c to delete the characters up to a following character. You can use . to delete

more if this doesn’t delete enough the first time (4.1).

u Undoes the last change made to the current buffer. If repeated, will alternate between these two

states, thus is its own inverse. When used after an insert which inserted text on more than one

line, the lines are saved in the numeric named buffers (3.5).

USD:11-26 An Introduction to Display Editing with Vi

v Unused.

w Advances to the beginning of the next word, as defined by b (2.4).

x Deletes the single character under the cursor. With a count deletes deletes that many characters

forward from the cursor position, but only on the current line (6.5).

y An operator, yanks the following object into the unnamed temporary buffer. If preceded by a

named buffer specification, "x, the text is placed in that buffer also. Te xt can be recovered by a

later p or P (7.4).

z Redraws the screen with the current line placed as specified by the following character: RETURN

specifies the top of the screen, . the center of the screen, and − at the bottom of the screen. A

count may be given after the z and before the following character to specify the new screen size

for the redraw. A count before the z gives the number of the line to place in the center of the

screen instead of the default current line. (5.4)

{ Retreats to the beginning of the beginning of the preceding paragraph. A paragraph begins at

each macro in the paragraphs option, normally ‘.IP’, ‘.LP’, ‘.PP’, ‘.QP’ and ‘.bp’. A paragraph

also begins after a completely empty line, and at each section boundary (see [[above) (4.2, 6.8,

7.6).

| Places the cursor on the character in the column specified by the count (7.1, 7.2).

} Advances to the beginning of the next paragraph. See { for the definition of paragraph (4.2, 6.8,

7.6).

˜ Unused.

ˆ? (DEL) Interrupts the editor, returning it to command accepting state (1.5, 7.5)

An Introduction to Display Editing with Vi USD:11-27

.

